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Abstract 

High-energy cascades have been simulated in gold using molecular dynamics with a 
modified embedded atom method potential. The results show that both vacancy and 
interstitial clusters form with high probability as a result of intracascade processes. The 
formation of clusters has been interpreted in terms of the high pressures generated in the 
core of the cascade during the early stages. We provide evidence that correlation between 
interstitial and vacancy clustering exists. 

Introduction 

The primary damage state in heavy ion, neutron or self- irradiated metals is a result of 
processes taking place within the lifetime of the displacement cascade. These cascades 
have been a subject of study for many years, and in particular, molecular dynamics (MD) 
simulations have been used extensively over the last ten years [I]. From the results of 
these MD studies, a relatively consistent picture of defect production has developed. 
Most significant, perhaps, is the fact that these simulations predict that even at low 
temperature both vacancies and interstitials can be. produced either isolated or as defect 
clusters within the 1 to 100 ps of the cascade lifetime, i.e., without the assistance of 
significant thermal diffusion. The production of interstitials is due to long replacement 
collision sequences (RCSs) and other processes that result in clustering and dislocation 
loop formation directly in the periphery of the cascade. The vacancies appear in the core 
of the cascade region after resolidification of the melt and depending on the details of the 
cooling process and the properties of the irradiated material, can also be found in large 
clusters and Frank dislocation loops. Despite all these efforts however, no clear picture 
that relates the appearance of interstitial clusters with physical processes occurring 
within the cascade lifetime has emerged. Moreover, experimental validation of interstitial 
loop formation in cascades is hampered by the fact that TEM observations m limited by 
resolution considerations to clusters larger than some 10 A containing one to several 
hundred defects and use very thin foils from which small prismatic loops can easily 
escape. Shimomura et a1 [2] canied out liquid He irradiations of metals with 14 MeV 
neutrons and in the thick sections of their samples observed loop growth during annealing 
below stage 111 after cold (20K) transfer of the irradiated specimens to the TEM, 
indicating that interstitial-type dislocation loops were present in the sample after liquid 
He irradiation. 

In this paper, we describe recent MD simulations of cascades in Au using an embedded 
atom method (EAM) potential for Au [3] that has been modified to account for short 



range interactions during the early stages of the cascade. The results are for 10 and 30 keV 
cascades and generally show that a large fraction of the produced defects are in clusters. 
Only in one case, for a 10 keV cascade, did we not find any clustering of the defects. In 
this case, the defect production eficiency was only about 6% of the NRT standard [4]. 
Moreover, in no case have we found cascades in which vacancy clustering occurs without 
interstitial clustering, or viceversa. We discuss the details of the cascade evolution and 
compare temperature, density and pressure profiles for a case where clusters were found 
to the case where no clusterine took dace. We show that the temperature profiles are 
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Resuh and Dkcussion 

Several snapshots of a 10 keV cascade at 50 K are displayed in Figure 1. Notice that the 
final shape of the cascade is already reached at 0.4 ps. At that point, the onset of the 
formation of the first cluster is clearly observed, as well as the beginning of the RCSs. The 
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maximum volume of the cascade is reached at about 2 
ps. At 27 ps one can consider that the cascade has 
terminated, this value being the maximum time 
reached in our MD study. The final number of 
Frenkel pairs is 66, i.e. 66% of the prediction of the 
NRT collisional model with a 40 eV average 
threshold displacement energy. More importantly, 
62 of them are in clusters. As is expected in metals, 
the vacancies are distributed in the central core of the 
cascade while the interstitials are located in the outer 
part. Most of the vacancies (55) form one big cluster. 

- We also observe a trend in this cluster to evolve to a 
Figure 2' Defect configuratiolL dislocation loop. This last issue can be checked by from a lo kev cascades in in extending the simulation time by MD, which would which no 'lusters are formed be a tedious task, or coupling MD with force-bias 
Monte Carlo. The sizes of the interstitial clusters are variable (34, 20, 8). The smallest 
cluster forms a prismatic dislocation loop and the larger ones exhibit the same tendency as 
the vacancies. Then, the same procedure could be applied to make sure whether they 
reach their minimum energy configuration as a loop or not. 

Figure 2 shows the final defect configuration 
generated by another 10 keV cascade at 300 K. In 
this case, no clusters are observed and the defect 
production efficiency is only 6% of the NRT 
prediction. All the interstitials are ejected by 
RCSs. In figure 3, we show the primary damage 
state at 60 ps resulting from a 30 keV cascade at 
300 K. Here, the defect production efficiency is 
30% of NRT (1 12 Frenkel pairs) and about 70% 
of the defects are in clusters. About 70 vacancies 
are clustered in two Frank loops. Only 9 

Figure 3. Primary damage state from interstitials remain as single type and only 2 as di- 
a 30 keV cascade in Au. The majority interstitials. The rest are present in four clusters 
of the vacancies and the interstitials of sizes 36, 33,25 and 7. 
are in clusters, as discussed in the 
text. 
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Figure 4. Hydrostatic and shear pressure profiles in 10 keV gold ckcades in gold. The 
peak values for the cascade with cluster formation (a) are much higher than those of the 
cascade without clusters (b). 
In order to understand the production of defect clusters and the difference in behavior 
between the two 10 keV cascades of figures 1 and 2, it is illustrative to consider the 
details of the cascade evolution. Figures 4 a and b show the hydrostatic and shear 
pressure profiles calculated for both 10 keV cascades as a function of distance from the 
centroid of energy distribution of each cascade. Pressures are calculated at the atomic level 
according to the formulation of Vitek et al [6 ] .  At short times (around 0.2 ps), when the 
cluster formation is about to take place, the pressure generated in the first cascade is much 
higher than in the second one. The extremely large values of the pressures are due to the 
fact that the calculations are carried out by considering the volume derivatives of the 
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energy of each atom. Thus, the results are skewed by the fact that during these early 
times, the region is not yet thermalized and many atoms have very high kinetic energies 
and are in close proximity to other atoms. Nevertheless, the results show that the 
distribution of collision events during the very early stages of the cascade and the 
establishment of extremely high pressure gradients as a result of localized high energy 
collisions are responsible for setting up the conditions for both vacancy and interstitial 
clustering. Note also that as shown in Fig. 1 the interstitial clusters are ejected at about 
the same time as the RCSs. Concomitant with the high pressures established in the 
cascade region there is a drastic reduction in the atomic density. This can be seen in 
Figures 5 a and b where radial density profiles at various times are shown. Again, for the 
cascade that results in defect clustering, the density reduction at early times is much larger 
than for the cascade that does not produce clusters. It is also interesting to note that no 
significant difference in the temperature profiles for these two cascades were observed at 
any time. 

Conclusions 

We performed MD simulations in the bulk and we analyzed interstitial clustering 
phenomena. Our results indicate that the tremendous increase in pressure occurring at 
short simulation times (0.2 ps) is responsible for the cluster formation. A strong 
correlation between interstitial and vacancy clustering can be extracted from our 
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Figure 5. Radial density profiles of 10 keV gold cascades in gold. After 2.7 ps, the density 
is reduced by a factor two in the cascade without clusters (a). The volume reduction is 
much higher in the cascade with cluster formation (b) due to the more elevated pressures at 
small times. 
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simulations as well as a higher efficiency for cascades where clusters are present. Our 
results allowed us to extract valuable information on diffusivities to be used in future 
kinetic-Monte Carlo studies. Ongoing calculations will extend the time scale achieved 
through MD by using force bias Monte Carlo. 
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